Counting Squarefree Discriminants of Trinomials under Abc Anirban Mukhopadhyay, M. Ram Murty and Kotyada Srinivas

نویسنده

  • KOTYADA SRINIVAS
چکیده

where Z denotes the set of integers. For positive integers A > 1, B > 1 we defineMn(A,B) to be the set of (a, b) with A ≤ |a| ≤ 2A, B ≤ |b| ≤ 2B such that f(t) is irreducible and Df is squarefree. It is reasonable to expect that for A, B tending to infinity, Mn(A,B) ∼ cnAB, for some positive constant cn. This is probably very difficult to prove. We will apply the abc conjecture to show that Mn(A,B) ≫ AB. Recall that the abc-conjecture, first formulated in 1985 by Oesterlé and Masser is the following statement. Fix ǫ > 0. If a, b and c are coprime positive integers satisfying a+ b = c, then c ≪ǫ N(a, b, c) where N(a, b, c) is the product of dictinct primes dividing abc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Squarefree Discriminants of Trinomials under Abc

For an odd positive integer n ≥ 5, assuming the truth of the abc conjecture, we show that for a positive proportion of pairs (a, b) of integers the trinomials of the form tn + at + b (a, b ∈ Z) are irreducible and their discriminants are squarefree.

متن کامل

On Quadratic Fields Generated by Discriminants of Irreducible Trinomials

A. Mukhopadhyay, M. R. Murty and K. Srinivas have recently studied various arithmetic properties of the discriminant ∆n(a, b) of the trinomial fn,a,b(t) = t n + at+ b, where n ≥ 5 is a fixed integer. In particular, it is shown that, under the abc-conjecture, for every n ≡ 1 (mod 4), the quadratic fields Q (√ ∆n(a, b) ) are pairwise distinct for a positive proportion of such discriminants with i...

متن کامل

On the Zeros of Functions in the Selberg Class

It is proved that under some suitable conditions, the degree two functions in the Selberg class have infinitely many zeros on the critical line.

متن کامل

ANote on the Divisibilityof Class Numbers of Real Quadratic Fields

Suppose g > 2 is an odd integer. For real number X > 2, define SgðXÞ the number of squarefree integers d4X with the class number of the real quadratic field Qð ffiffiffi d p Þ being divisible by g. By constructing the discriminants based on the work of Yamamoto, we prove that a lower bound SgðXÞ4X 1=g e holds for any fixed e > 0, which improves a result of Ram Murty. # 2002 Elsevier Science (USA)

متن کامل

Representations of integers by certain positive definite binary quadratic forms

We prove part of a conjecture of Borwein and Choi concerning an estimate on the square of the number of solutions to n= x2 +Ny2 for a squarefree integer N .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008